Изящная задача на восстановление треугольника

Столкнулся тут с одной весьма изящной задачей на восстановление треугольника по заданным точкам. (Мотивировочную преамбулу, видимо напишу позднее). Речь идёт о задаче восстановления треугольника ABC по середине M_1 стороны BC, основанию H_2 высоты, опущенной из вершины B  и основанию L_1 биссектрисы угла A. Кратко: (M_1,H_2,L_1).

Решил я её весьма непросто (страшно сказать: применил такое ГМТ, как окружность Апполония!) А вот мой коллега — Владимир Черноруцкий — мне подсказал изумительно изящное построение! С удовольствием его цитирую:

(M1,L1,H2)

Построение В. Ч.:

  1. Строим прямую a_x=M_1L_1.
  2. Строим окружность \omega с центром в точке M_1 и радиусом M_1H_2. Эта окружность пересекает прямую a_x в точках B и  C.
  3. Строим прямую b_x=CH_2.
  4. Строим окружность с центром в точке  L_1, касающуюся прямой  b_x. После этого остаётся лишь построить к этой окружности касательную из точки  B и получить точку A.

Браво маэстро!

Однако это ещё не всё!!! Вот что значит свежий взгляд: оказывается биссектриса равноудалена от сторон треугольника!!! А я-то это упустил из виду. Это замечательное наблюдение Черноруцкого позволило мне решить ещё одну задачу на восстановление, которая мне не давалась: (A, L_1,L_2):

(A,L1,L2)

  1. Строим прямую b_x=AL_2. Строим прямую c_x симметрично отражая b_x относительно AL_1.
  2. Строим окружность с центром в точке L_2, касающуюся прямой c_x .
  3. Строим к этой окружности касательную из точки L_1, которая в пересечении с b_x и c_x  даёт нам точки B и C.

Браво маэстро ещё раз!!!

Реклама

4 комментария (+add yours?)

  1. ВВЧ
    Апр 02, 2014 @ 23:43:40

    В пунктах 2 и 4 одинаковая окружность \omega ?

    Ответить

  2. ВВЧ
    Апр 03, 2014 @ 00:00:44

    И ваще — чего тут строить? Ведь есть уже одна сторона BC и прямая, содержащая сторону BA. Ну строим окружность с центром L_1 и касающуюся CH_2, а потом к ней (любую) касательную из B. Вот и всё (даже вроде 2 решения будет). И Апполоний подождет более значительного события. Я не прав?

    Ответить

  3. belyaevsan
    Апр 03, 2014 @ 06:18:44

    Ура! Удалось решить ещё две задачи на восстановление: (A,H_1,L_2) и (A,H_2,L_3). И всё то же соображение: биссектриса равноудалена от сторон угла!

    Ответить

Добавить комментарий

Заполните поля или щелкните по значку, чтобы оставить свой комментарий:

Логотип WordPress.com

Для комментария используется ваша учётная запись WordPress.com. Выход / Изменить )

Фотография Twitter

Для комментария используется ваша учётная запись Twitter. Выход / Изменить )

Фотография Facebook

Для комментария используется ваша учётная запись Facebook. Выход / Изменить )

Google+ photo

Для комментария используется ваша учётная запись Google+. Выход / Изменить )

Connecting to %s

%d такие блоггеры, как: